Q1	$f(x) = 12x^3 - 24x^2 + 12x, \qquad 0 \le x \le 1$			
(i)	$E(X) = \int_{0}^{1} xf(x)dx$	M1	Integral for $E(X)$ including limits (which may appear later).	
	$=12\left[\frac{x^{5}}{5}-2\frac{x^{4}}{4}+\frac{x^{3}}{3}\right]_{0}^{1}$	A1	Successfully integrated.	
	$=12\left[\frac{1}{5} - \frac{2}{4} + \frac{1}{3}\right] = 12 \times \frac{1}{30} = \frac{2}{5}$	A1	Correct use of limits leading to final answer. C.a.o.	
	For mode, $f'(x) = 0$	M1		
	f'(x) = 12(3x ² - 4x + 1) = 12(3x - 1)(x - 1) ∴ f'(x) = 0 for x = 1 and x = $\frac{1}{3}$	A1		
	Any convincing argument (e.g. $f''(x)$) that $\frac{1}{3}$	A1		6
(")	(and not 1) is the mode.	M1		
(11)	(ii) Cdf $F(x) = \int_{0}^{x} f(t)dt$ $= 12\left(\frac{x^{4}}{4} - 2\frac{x^{3}}{3} + \frac{x^{2}}{2}\right)$ $= 3x^{4} - 8x^{3} + 6x^{2}$ $F\left(\frac{1}{4}\right) = \frac{3}{256} - \frac{8}{64} + \frac{6}{16} = \frac{3-32+96}{256} = \frac{67}{256}$		Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen.	
			Or equivalent expression; condone absence of domain [0,1].	
	$F\left(\frac{3}{4}\right) = \frac{3\times81}{256} - \frac{8\times27}{64} + \frac{6\times9}{16} = \frac{243}{256}$	B1	For all three; answers given; must show convincing working (such as common denominator)! Use of decimals is	3
()			not acceptable.	
(iii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2	For e_i . B1 if any 2 correct, provided $\Sigma = 512$.	
	$X^{2} = 0.4776 + 0.3716 + 0.0672 + 15.3846 =$ 16.30(1)			
	Refer to χ_3^2 .	M1	Must be some clear evidence of reference to χ_3^2 , probably implicit by reference to a critical point (5% : 7.815; 1% : 11.34). No ft (to the A marks) if incorrect χ^2 used,	
	Very highly significant. Very strong evidence that the model does not fit.	A1 A1	but E marks are still available. There must be at least one reference to "very …", i.e. the extremeness of the test statistic.	
	The main feature is that we observe many		Or e.g. "big/small" contributions	

4768	Mark Scheme		June 2006	
	more loads at the "top end" than expected. The other observations are below expectation, but discrepancies are comparatively small.	E1 E1	to <i>X</i> ² gets E1, and directions of discrepancies gets E1.	9
				18

4768

		1		
Q2	A to B : $X \sim N(26, \sigma = 3)$ B to C : $Y \sim N(15, \sigma = 2)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$P(X < 24) = P\left(Z < \frac{24 - 26}{3} = -0.6667\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
	= 1 - 0.7476 = 0.2524	A1	c.a.o.	3
(ii)	$X + Y \sim N(41,$	B1	Mean.	
	$\sigma^2 = 9 + 4 = 13 [\sigma = 3.6056])$	B1	Variance. Accept sd.	
	P(this < 42) = P $\left(Z < \frac{42 - 41}{3 \cdot 6056} = 0 \cdot 2774\right) = 0 \cdot 6093$	A1	c.a.o.	3
(iii)	$0.85X \sim N(22.1,$	B1	Mean.	-
. ,	$\sigma^{2} = (0.85)^{2} \times 9 = 6.5025 \ [\sigma = 2.55])$	B1	Variance. Accept sd.	
	P(this < 24) = P($Z < \frac{24 - 22 \cdot 1}{2 \cdot 55} = 0.7451$)			
	= 0.7719	A1	c.a.o.	3
(iv)	$0.9X + 0.8Y \sim N(23.4 + 12 = 35.4,$	B1	Mean.	-
	$\sigma^2 = (0.9)^2 \times 9 + (0.8)^2 \times 4 = 9.85 [\sigma = 3.1385])$	B1	Variance. Accept sd.	
	Require t such that 0.75 = P(this < t) = P\left(Z < \frac{t - 35 \cdot 4}{3 \cdot 1385}\right) = P(Z < 0.6745)	M1 B1	Formulation of requirement (using c's parameters). Any use of a continuity correction scores M0 (and hence A0). 0.6745	
	$\therefore t - 35 \cdot 4 = 3 \cdot 1385 \times 0 \cdot 6745 = 2 \cdot 1169$		0.0745	
	$\Rightarrow t = 37 \cdot 52$	A1	c.a.o.	
	Must therefore take scheduled time as 38	M1	Round to next integer above c's value for <i>t</i> .	6
(v)	CI is given by	1		
	$13 \cdot 4 \pm 1 \cdot 96 \frac{2}{\sqrt{15}}$	M1	If <u>both</u> 13.4 and $2/\sqrt{15}$ are correct. (N.B. 13.4 is given as \overline{x} in the question.) (If $3/\sqrt{15}$ used, treat as mis-read and award this M1, but not the final A1.)	
	= 13·4 ± 1·0121 = (12·38(79), 14·41(21))	B1 A1	For 1.96 c.a.o. Must be expressed as an interval.	3
				18

PMT

Q3				
(i)	Simple random sample might not be representative - e.g. it might contain only managers.	E1 E1	Or other sensible comment.	2
(ii)	Presumably there is a list of staff, so systematic sampling would be possible. List is likely to be alphabetical, in which case systematic sampling might not be representative.	E1 E1		
	But if the list is in categories, systematic sampling could work well.	E1	Or other sensible comments.	3
(iii)	Would cover the entire population. Can get information for each category.	E1 E1		2
(iv)	5, 11, 24	B1	(4.8, 11.2, 24)	1
(v)	$\overline{x} = 345818, \ s_{n-1} = 69241$ Underlying Normality H ₀ : $\mu = 300000, \ H_1: \mu > 300000$ Test statistic is $\frac{345818 - 300000}{\frac{69241}{\sqrt{11}}}$	M1	All given in the question. Allow alternatives: $300000 + (c's 1.812) \times \frac{69241}{\sqrt{11}}$ (= 337829) for subsequent comparison with 345818.	
	=2.19(47).	A1	or $345818 - (c's 1.812) \times \frac{69241}{\sqrt{11}}$ (= 307988) for comparison with 300000. c.a.o. but ft from here in any case if wrong. Use of $\mu - \overline{d}$ scores M1A0, but ft.	
	Refer to <i>t</i> ₁₀ . Upper 5% point is 1.812. Significant. Evidence that mean wealth is greater than 300 000.	M1 A1 A1 A1	No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Special case: (t_{11} and 1.796) can score 1 of these last 2 marks if either form of conclusion is given.	
	CI is given by 345818 \pm 2.228 $\times \frac{69241}{\sqrt{11}}$	M1 B1 M1		
	= 345818 ± 46513·84 = (299304(·2),	A1	c.a.o. Must be expressed as an	10

PMT

4768		Mark Scheme	June 2006	
	392331(·8))		interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{10} is OK.	
				18

		1		1
Q4				
(i)				
(i)	Difference Rank of diff			
	S	M1	For differences.	
	-2 2		ZERO in this section if	
			differences not used.	
	$ \begin{array}{c cc} -6 & 5 \\ -3 & 3 \end{array} $			
	-3 3 4 4			
	- 12 9			
	7 6	M1		
	-8 7	A1	For ranks.	
	- 10 8		FT from here if ranks wrong	
	T = 4 + 6 = 10 (or $1 + 2 + 3 + 5 + 7 + 8 + 9 = 35$)	B1		
	Refer to tables of Wilcoxon paired (/single	M1	No ft from here if wrong.	
	sample) statistic. Lower (or upper if 35 used) 5% tail is	M1	i.e. a 1-tail test. No ft from here if	
	needed.		wrong.	
	Value for $n = 9$ is 8 (or 37 if 35 used).	A1 A1	No ft from here if wrong.	
	Result is not significant. No evidence to suggest a real change.	A1	ft only c's test statistic. ft only c's test statistic.	9
(ii)	Normality of differences is required.	B1		
	CI MUST be based on DIFFERENCES.		ZERO/6 for the CI if differences	
	Differences are 53, 15, 32, 13, 61,		not used. Accept negatives throughout.	
	_ 82, 70	_		
	$\vec{d} = 46 \cdot 5714$ $s_{n-1} = 27 \cdot 0485$	B1	Accept $s_{n-1}^2 = 731.62$	
			$[s_n = 25.0420$, but do <u>NOT</u> allow this here or in construction of CI.]	
	CI is given by			
	46·5714 ±	M1	Allow c's $\overline{d} \pm \dots$	
	3.707	B1		
		B1	If <i>t</i> ₆ used.	
			99% 2-tail point for c's t	
			distribution. (Independent of	
	27 . 0485		previous mark.)	
	$\times \frac{27 \cdot 0485}{\sqrt{7}}$	M1	Allow c's s _{n-1} .	
	$= 46.5714 \pm 37.8980 = (8.67(34), 84.47)$	A1	c.a.o. Must be expressed as an	
			interval. [Upper boundary is 84.4694]	
	Cannot base CI on Normal distribution			
	because	E1		
	sample is small	E1	Insist on "population", but allow " σ ".	9
	population s.d. is not known		0.	
				18
L		I	1	🦉