Q1	$\mathrm{f}(\mathrm{x})=12 x^{3}-24 x^{2}+12 x, \quad 0 \leq x \leq 1$			
(i)	$\begin{aligned} \mathrm{E}(X) & =\int_{0}^{1} x f(x) \mathrm{d} x \\ & =12\left[\frac{x^{5}}{5}-2 \frac{x^{4}}{4}+\frac{x^{3}}{3}\right]_{0}^{1} \\ & =12\left[\frac{1}{5}-\frac{2}{4}+\frac{1}{3}\right]=12 \times \frac{1}{30}=\frac{2}{5} \end{aligned}$ For mode, $\mathrm{f}^{\prime}(x)=0$ $\begin{aligned} & \mathrm{f}^{\prime}(x)=12\left(3 x^{2}-4 x+1\right)=12(3 x-1)(x-1) \\ & \therefore \mathrm{f}^{\prime}(x)=0 \text { for } x=1 \text { and } x=\frac{1}{3} \end{aligned}$ Any convincing argument (e.g. $\mathrm{f}^{\prime \prime}(x)$) that $\frac{1}{3}$ (and not 1) is the mode.	M1 A1 A1 M1 A1 A1	Integral for $\mathrm{E}(X)$ including limits (which may appear later). Successfully integrated. Correct use of limits leading to final answer. C.a.o.	6
(ii)	$\begin{aligned} \text { Cdf } \mathrm{F}(x) & =\int_{0}^{x} \mathrm{f}(t) \mathrm{d} t \\ & =12\left(\frac{x^{4}}{4}-2 \frac{x^{3}}{3}+\frac{x^{2}}{2}\right) \\ & =3 x^{4}-8 x^{3}+6 x^{2} \end{aligned}$ $\begin{aligned} & F\left(\frac{1}{4}\right)=\frac{3}{256}-\frac{8}{64}+\frac{6}{16}=\frac{3-32+96}{256}=\frac{67}{256} \\ & F\left(\frac{1}{2}\right)=\frac{3}{16}-\frac{8}{8}+\frac{6}{4}=\frac{3-16+24}{16}=\frac{11}{16} \end{aligned}$ $F\left(\frac{3}{4}\right)=\frac{3 \times 81}{256}-\frac{8 \times 27}{64}+\frac{6 \times 9}{16}=\frac{243}{256}$	M1	Definition of cdf, including limits (or use of " +C " and attempt to evaluate it), possibly implied later. Some valid method must be seen. Or equivalent expression; condone absence of domain [0,1]. For all three; answers given; must show convincing working (such as common denominator)! Use of decimals is not acceptable.	3
(iii)	$\begin{aligned} & x^{2}=0.4776+0.3716+0.0672+15 \cdot 3846= \\ & \quad 16 \cdot 30(1) \\ & \text { Refer to } \chi_{3}^{2} . \end{aligned}$ Very highly significant. Very strong evidence that the model does not fit. The main feature is that we observe many	B2 M1 A1 M1 A1 A1	For e_{i}. B1 if any 2 correct, provided $\Sigma=$ 512. Must be some clear evidence of reference to χ_{3}^{2}, probably implicit by reference to a critical point ($5 \%: 7 \cdot 815 ; 1 \%: 11 \cdot 34$). No ft (to the A marks) if incorrect χ^{2} used, but E marks are still available. There must be at least one reference to "very ...", i.e. the extremeness of the test statistic. Or e.g. "big/small" contributions	

more loads at the "top end" than expected. The other observations are below expectation, but discrepancies are comparatively small.	E1	to X^{2} gets E1, ...		
\ldots and directions of				
discrepancies gets E1.			$\quad 9$	(
:---				

Q2	A to $\mathrm{B}: X \sim \mathrm{~N}(26, \sigma=3)$ B to $C: Y \sim N(15, \sigma=2)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$\begin{aligned} \mathrm{P}(X<24) & =\mathrm{P}\left(Z<\frac{24-26}{3}=-0 \cdot 6667\right) \\ & =1-0.7476=0.2524 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere. с.a.o.	3
(ii)	$\begin{aligned} & X+Y \sim \mathrm{~N}(41, \\ & \mathrm{P}(\text { this }<42)= \\ & \quad \mathrm{P}\left(Z<\frac{42-41}{3 \cdot 6056}=0 \cdot 2774\right)=0 \cdot 6093 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd. c.a.o.	3
(iii)	$\begin{aligned} & 0 \cdot 85 X \sim \mathrm{~N}(22 \cdot 1 \\ & \sigma^{2}\left.=(0 \cdot 85)^{2} \times 9=6 \cdot 5025[\sigma=2 \cdot 55]\right) \\ & \mathrm{P}(\text { this }<24)=\mathrm{P}\left(Z<\frac{24-22 \cdot 1}{2 \cdot 55}=0 \cdot 7451\right) \\ &=0.7719 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd. c.a.o.	3
(iv)	$\begin{aligned} 0 \cdot 9 X+0 \cdot 8 Y & \sim N(23 \cdot 4+12=35 \cdot 4, \\ \sigma^{2} & =(0 \cdot 9)^{2} \times 9+(0 \cdot 8)^{2} \times 4=9 \cdot 85[\sigma=3 \cdot 1383) \end{aligned}$ Require t such that $0.75=\mathrm{P}($ this $<t)$ $\begin{array}{r} =\mathrm{P}\left(Z<\frac{t-35 \cdot 4}{3 \cdot 1385}\right)=\mathrm{P}(Z<0 \cdot 6745) \\ \therefore t-35 \cdot 4=3 \cdot 1385 \times 0 \cdot 6745=2 \cdot 1169 \\ \Rightarrow t=37 \cdot 52 \end{array}$ Must therefore take scheduled time as 38	B1 B1 M1 B1 A1 M1	Mean. Variance. Accept sd. Formulation of requirement (using c's parameters). Any use of a continuity correction scores MO (and hence A0). 0.6745 c.a.o. Round to next integer above c's value for t.	6
(v)	Cl is given by $13 \cdot 4 \pm 1 \cdot 96 \frac{2}{\sqrt{15}}$ $\begin{aligned} & =13 \cdot 4 \pm 1 \cdot 0121=(12 \cdot 38(79), \\ & 14 \cdot 41(21)) \end{aligned}$	M1 B1 A1	If both 13.4 and $2 / \sqrt{15}$ are correct. (N.B. 13.4 is given as \bar{x} in the question.) (If $3 / \sqrt{15}$ used, treat as mis-read and award this M1, but not the final A1.) For 1.96 c.a.o. Must be expressed as an interval.	3
				18

Q3				
(i)	Simple random sample might not be representative - e.g. it might contain only managers.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Or other sensible comment.	2
(ii)	Presumably there is a list of staff, so systematic sampling would be possible. List is likely to be alphabetical, in which case systematic sampling might not be representative. But if the list is in categories, systematic sampling could work well.	E1 E1 E1	Or other sensible comments.	3
(iii)	Would cover the entire population. Can get information for each category.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$		2
(iv)	5, 11, 24	B1	(4.8, 11-2, 24)	1
(v)	$\bar{x}=345818, \quad s_{n-1}=69241$ Underlying Normality $\mathrm{H}_{0}: \mu=300000, \quad \mathrm{H}_{1}: \mu>300000$ Test statistic is $\frac{345818-300000}{\frac{69241}{\sqrt{ } 11}}$ $=2 \cdot 19(47)$ Refer to t_{10}. Upper 5\% point is 1.812. Significant. Evidence that mean wealth is greater than 300000. Cl is given by $\begin{aligned} & 345818 \pm \\ & 2 \cdot 228 \\ & \\ & \quad \times \frac{69241}{\sqrt{ } 11} \end{aligned}$ $=345818 \pm 46513 \cdot 84=(299304(\cdot 2)$	M1 A1 M1 A1 A1 A1 M1 B1 M1 A1	All given in the question. Allow alternatives: 300000 + (c's $1.812) \times \frac{69241}{\sqrt{11}}(=337829)$ for subsequent comparison with 345818. or 345818 - (c's 1.812) $\times \frac{69241}{\sqrt{ } 11}$ (= 307988) for comparison with 300000. c.a.o. but ft from here in any case if wrong. Use of $\mu-\bar{d}$ scores M1A0, but ft . No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Special case: (t_{11} and 1-796) can score 1 of these last 2 marks if either form of conclusion is given. c.a.o. Must be expressed as an	10

$392331(\cdot 8))$	interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{10} is OK.		

Q4					
(i)	Difference s Rank of \|diff	 -2 2 -1 1 -6 5 -3 3 4 4 -12 9 7 6 -8 7 -10 8$T=4+6=10 \quad \text { (or } 1+2+3+5+7+8+9=35)$ Refer to tables of Wilcoxon paired (/single sample) statistic. Lower (or upper if 35 used) 5% tail is needed. Value for $n=9$ is 8 (or 37 if 35 used). Result is not significant. No evidence to suggest a real change.	M1 M1 A1 B1 M1 M1 A1 A1 A1	For differences. ZERO in this section if differences not used. For ranks. FT from here if ranks wrong No ft from here if wrong. i.e. a 1-tail test. No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	9
(ii)	Normality of differences is required. CI MUST be based on DIFFERENCES. Differences are $53,15,32,13,61$, 82, 70 $\bar{d}=46.5714 \quad s_{n-1}=27.0485$ Cl is given by $\underbrace{}_{36.707}$ $\begin{gathered} \times \frac{27 \cdot 0485}{\sqrt{7}} \\ =46.5714 \pm 37.8980=(8 \cdot 67(34), 84 \cdot 47) \end{gathered}$ Cannot base Cl on Normal distribution because sample is small population s.d. is not known	B1 B1 M1 B1 B1 M1 A1 E1 E1	ZERO/6 for the CI if differences not used. Accept negatives throughout. Accept $s_{n-1}^{2}=731 \cdot 62 \ldots$ [$s_{n}=25.0420$, but do NOT allow this here or in construction of Cl .] Allow c's $\bar{d} \pm \ldots$ If t_{6} used. 99\% 2-tail point for c's t distribution. (Independent of previous mark.) Allow c's S_{n-1}. c.a.o. Must be expressed as an interval. [Upper boundary is 84.4694] Insist on "population", but allow " σ ".	9	
				18	

